
1

Achieving Real-Time Object Detection and
Tracking Under Extreme Conditions

Fatih Porikli

Abstract— In this survey, we present a brief analysis of single
camera object detection and tracking methods. We also give a
comparison of their computational complexities. These methods
are designed to perform accurately under difficult conditions
such as erratic motion, drastic illumination change, and noise
contamination.

I. INTRODUCTION

OBJECT tracking is one the most important tasks in
computer vision. In video surveillance, it assists under-

standing the movement patterns of people to uncover suspi-
cious events. It is a key technology in traffic management
to estimate flux and congestion statistics. Advanced vehicle
control systems depend on the tracking information to keep the
vehicle in lane and prevent from collisions. In physical therapy,
analyzing the mobility of patients improves the accuracy of
their diagnosis. Learning the shopping behavior of customers
by tracking assists the architecture design in retail space
instrumentation. In robotics, tracking bridges the gap between
the raw visual information and environmental awareness. In
video summarization, it is applied to generate object-based
representations and automatic content annotations. Tracking
is also a fundamental technology to extract regions of interest
and video object layers as defined in JPEG-2000 and MPEG-4
standards.

Even though it is essential to many applications, robust ob-
ject tracking under uncontrolled conditions still poses a chal-
lenge. Real-life systems are required to track objects not only
when the background scene is static but also when lighting
changes suddenly, camera-object motion becomes large, color
contrast becomes low, image noise soars to an unacceptable
level, etc. In addition, the computational complexity is required
to be kept minimum for real-time performance.

In the following sections, we describe object detection and
tracking methods that are designed to resolve the above issues.

II. OBJECT DETECTION

Background subtraction is a common approach for discrim-
inating moving regions in fixed camera setups. Basically, a
pixel-wise reference model for the stationary part of the scene
is estimated. Then, the observed image is compared with this
reference to obtain a foreground mask.

A reference frame can be easily computed by averaging (or
α-blending) the previous frames. However, averaging induces
ghost effect, i.e. distortion of colors behind moving objects.
Illumination changes, moving shadows, and other motions
e.g. swaying trees also cause similar artifacts. Alternatively,
predictive techniques such as Kalman [?] and Wiener [?] filters

are applied to learn the temporal color wariations at each pixel.
These techniques assume color variations can be modeled by a
random variable. They heavily depend on the predefined state
transition parameters. As a result, they may fail in case the
color distribution does not fit into a single model or color
distribution has a different shape function.

To handle multimodal backgrounds, mixture of model back-
ground is proposed [?]. Often, these models are assigned
as Gaussian functions. Since the background models is up-
dated at every frame, iterative update mechanisms, e.g. on-
line expectation maximization (EM) algorithm, are applied
to fit the models. However, online EM blends weak modes
into stronger ones and distorts the model mean values as
shown in Fig. 1. To achieve accurate adaptation of models,
a Bayesian update mechanism [?], which can also estimate
the number of required models, is proposed. This approach
is flexible enough to handle illumination variations and other
arbitrary changes in the scene. There are also variants of the
mixture of model background that uses image gradient and
optical flow information [?]. Mixture of model approaches
can converge to any arbitrary distribution provided enough
number of observations. However, their computational cost
grows exponentially as the number of models in the mixture
increases. Another background modeling approach is non-
parametric kernel density estimation [?]. This method stores
color values of multiple frames and estimates the contributions
of a set of kernel functions using all of the data instead of
iteratively updating background models at each frame. Both
memory and computational cost are proportional to the number
of frames. As a result, kernel based methods may become
infeasible for real-time applications.

A shortcoming of the above methods is that they neglect
the temporal correlation of color values. This impedes dis-
tinguishing a periodic background motion such as swaying
plants driven by wind, waves on a beach, rotating objects, etc.,
from the foreground object motion. Since real-world physics
often induces near-periodic phenomenon in the environment,
a frequency decomposition based representation of the back-
ground, wave-back, is proposed [?]. This algorithm detects
motion based on the form of the temporal color variation
by comparing the frequency transform responses. Thus, the
background models are fit in the frequency domain. Similar
to kernel based methods, a multitude of frames are stored. At
every frame, a frequency transform is applied and the obtained
coefficients are compared to the background models to gener-
ate a distance map as given in Fig. 2. Detection of the time-
varying phenomenon is also attempted using corner-based
background models [?]. Instead of processing every pixel, this
algorithm detects a certain number of feature points using



2

TABLE I
PERFORMANCE OF BACKGROUND BASED OBJECT DETECTION

complexity msec LA† PB† MM† NH†

α-Blend O(M) 5 poor poor poor poor
Kalman [?] O(M) 8 some poor poor some
EM [?] O(Mn2) 45 some poor good good
Bayesian [?] O(Mn2) 35 some poor best good
Wave-back [?] O(MTlog(T )) 55 good best poor poor
Corner [?] O(MD2) 150 some good poor good
Intrinsic [?] O(MT ) 30 best good poor best

(†) LA: lighting adaptation, PB: periodic backgrounds, MM:
multi-modal backgrounds, NH: noise handling. See text for

parameters.

a Harris corner detector and a scale-invariant feature point
descriptor. It dynamically learns a single background model
and classify each extracted feature as either a background or
a foreground feature. It also uses a “Lucas-Kanade” motion
tracker to differentiate motion consistent foreground points
from background points with random or repetitive motion.
Since feature point extraction and descriptor generation are
computationally expensive, this algorithm may not be suitable
for real-time applications if number of feature points increases.
Sample detection results are shown in Fig. 3.

Instead of adapting models to the background, the scene
can be represented using intrinsic images as a multiplication
of static and dynamic parts [?]. This algorithm keeps a set
of previous images and applies gradient filters. By taking
advantage of the sparseness of the filter responses, it estimates
the background intrinsic image using a log domain median
filter. From background and current image, it constructs a
foreground mask as shown in Fig. 4. This method is robust to
sudden and severe illumination changes and computationally
inexpensive. Sample comparison results with mixture models
are provided in Fig. 5.

We summarized the performance of the above algorithms
under real-life conditions as well as their computational com-
plexity in table I. We denote the image size (total number of
pixels) as M , the number of background models as n, the num-
ber of previous frames as T , and the local descriptor window
size as D (other constants are disregarded). We also list the
speed of each algorithm running on a P4 3GHz machine for a
320× 240 color video. Note that, the computational load and
memory requirements are heavily coupled and they depend on
whether a hardware implementation (or parallel processing) is
adapted or not. Usually, the following techniques are employed
to reduce the computational complexity and scale down the
memory footprint for practical systems:

• Partially updating the background or subsampling,
• Limiting temporal size of detectable variations,
• Assuming color channels to be independent,
• Using lower dimensional color representations.

III. INTER-FRAME TRACKING

Tracking, that is finding a region corresponding to a given
object in the image, also faces similar challenges. Objects
frequently change their appearance and pose. They occlude

Fig. 1. EM update [?] vs. Bayesian update [?]. Left: Sample frames.
Middle: First (top) and second (bottom) background layers of EM
update. Right: Bayesian update result. EM update inaccurately blends
distinct modes into identical layers. Bayesian update can identify
separate layers, i.e. road and shadow modes. (Red means no layer)

Fig. 2. Object detection in thermal IR that depicts a sea shore. As
visible, the wave-back [?] method distinguishes the periodic motion
of sea waves from the motion of a small boat. (Courtesy of PETS)

Fig. 3. Detected foreground points by corner based approach [?].

Fig. 4. Detected foreground regions using intrinsic background [?].



3

Fig. 5. Comparison of GMM [?] and intrinsic [?] background
modeling. Top: Sudden illumination change happens. Middle: GMM
method confuses and its recovery takes time. Bottom: Intrinsic
background is not disturbed. Both methods use the RGB color space.

each other, become temporarily hidden, merge together and
split. Depending on the application, they exhibit erratic motion
patterns and often make sudden turns.

Tracking can be considered as estimation of the state given
all the measurements up to that moment, or equivalently
constructing the probability density function of object location.
A simple tracking approach is predictive filtering. This method
uses object color and location statistics while updating an
object model by constant weights [?]. When the measurement
noise are assumed to be Gaussian, the optimal solution is
provided by the Kalman filter [?]. When the state space is
discrete and consists of a finite number of states, Markovian
filters can be applied for tracking. The most general class of
filters is represented by particle filters, which are based on
Monte Carlo integration methods. The current density of the
state (which can be location, size, speed, boundary [?], etc.)
is represented by a set of random samples with associated
weights and the new density is computed based on these
samples and weights. Particle filtering is a popular tracking
method [?],[?]. However, it is based on random sampling
that becomes a problematic issue due to sample degeneracy,
especially for higher dimensional representations.

In contrast, the mean-shift tracker is a non-parametric
density gradient estimator that is iteratively executed within
the local search kernels [?]. It models the object probability
density in terms of color histogram, and moves the object
region towards the largest gradient direction. Thus, it is
computationally simple. Nevertheless, if the object relocation
between successive frames is larger than the kernel size, it fails
to detect the object. Since the histograms are used to determine
likelihood, the gradient estimation and convergence becomes
inaccurate in case object and background color distribution
are similar. To solve this issue, a multi-kernel mean-shift
approach is proposed [?]. The additional kernels are obtained
by background subtraction. In order to resolve the above
convergence issue, another kernel that pushes the object away
from the background regions are adapted.

Tracking can also be considered as a classification problem

and a classifier can be trained to distinguish the object from the
background [?]. This is done by constructing a feature vector
for every pixel in the reference image and training a classifier
to separate pixels that belong to the object from pixels that
belong to the background. Integrating classifiers over time
improves the stability of the tracker in cases illumination
changes. As in the mean-shift, an object can be tracked only
if its motion is small. This method can confuse objects in case
of an occlusion.

Object representation, that is how to convert color, motion,
shape, and other properties into a compact and identifiable
form, plays critical role in tracking. Conventional trackers
either depend only on color histograms, which disregard the
structural arrangement of pixels, or appearance models, which
ignore the statistical properties. There are several shortcomings
of these representations. Populating higher dimensional his-
tograms by a small number of pixels results in an incomplete
representation. Besides, histograms are easily distorted by
noise. Appearance models are sensitive to the scale changes
and localization errors.

Covariance matrix representation [?] embodies both spatial
and statistical properties of objects, and provides an elegant
solution to fusion of multiple features. Covariance is an
essential measure of how much the deviation of two or
more variables or processes match. In tracking, these vari-
ables correspond to point features such as coordinate, color,
gradient, orientation, and filter responses. This representation
has much lower dimensionality than histograms. It is robust
against noise and lighting changes as shown in Figs. 6-7. To
track objects using covariance descriptor, an eigenvector based
distance metric is adapted to compare the matrices of object
and candidate regions [?]. Covariance tracker does not make
any assumption on the motion. This means that it can keep
track of objects even if their motion is erratic and fast. It can
compare any regions without being restricted to a constant
window size. In spite of these advantages, the computation
of the covariance matrix distance for all candidate regions
is slow and requires exponential time. An integral image
based algorithm that requires constant time is proposed to
improve the speed [?]. This technique significantly accelerates
the covariance matrix extraction process by taking advantage
of the spatial arrangement of the points as illustrated in
Fig. 8. The graphs show the ratio of computational savings for
histogram extraction, which in return accelerates the tracking
methods that use histograms, and covariance matrix extraction.

Table II shows the computational load and robustness of
the above tracking methods under various conditions including
erratic motion, appearance changes, etc. We denote the tracked
object size (number of pixels in object region) as N , the image
size (total number of pixels) as M , the histogram size as H ,
the candidate regions as R, the number of features in the
covariance matrix as F , and the number of classifiers as C.
We also present the approximate processing times for tracking
of a 20× 40 object on a P4 3GHz machine.

As many vision tasks, object detection and tracking also
benefit from specific hardware implementations. Such im-
plementations contain various combinations of different sub-
systems such as traditional Digital Signal Processors (DSP),



4

TABLE II
PERFORMANCE OF INTER-FRAME TRACKING

complexity msec AC† EM† FM† SO†

Predictive [?] O(NH) 10 some poor poor poor
Mean-shift [?] O(NH) 12 some some poor poor
Multi-kernel [?] O(NHR) 20 some good good poor
Particle [?] O(NHR) 25 good some poor poor
Ensemble [?] O(NHC) 20 best some poor poor
Covariance [?] O(MF 2) 150 good good best some

AC: appearance changes, EM: erratic motion, FM: fast motion, SO:
small objects. See text for parameters and explanation.

Fig. 6. Sample covariance tracking [?] results. Occlusion (top)
and severe illumination change (bottom). Note that, intensity is not
discarded as in conventional approaches, in contrast, the RGB color
space is used.

Graphic Processor Units (GPU), Fully Programmable Gate Ar-
rays (FPGA), Application Specific Integrated Circuits (ASIC),
and other reconfigurable cores.

DSPs offers software programmability, which is a cost-
effective means for keeping hardware viable. With a pro-
grammable DSP architecture, it is possible to speed up fun-
damental low-level algorithms. On the other hand, ASICs
offer a high performance, low power, and low cost option for
implementing algorithms in volume, but supporting different
tracking methods requires an expanding number of ASICs,
leading to larger devices, greater power consumption, and
higher cost. GPUs also allow construction of economical and
parallel architectures. Several processor intensive algorithms
including contrast enhancement, color conversion, edge detec-
tion, feature point tracking, etc. can be offloaded to GPUs.

Fig. 7. Noise performance for the frames 1 (left), 40 (middle),
and 200 (right). Top: Mean-shift tracker [?] using color histogram.
Bottom: Covariance tracker [?] using 7 features. Almost 95% of
pixels are distorted by noise.

0 50 100 150 200
0

1

2

3

4

5
x 10

4

 B = 8

 B = 16

 B = 32

 B = 64

Computational improvement 
2−D Gray Level Image

Image size (MxM) 

× 
tim

es
 fa

st
er

2 4 6 8 10
0 

25

50

75

100

125

150

175

200

Number of features

tim
e 

(m
se

c)

Extraction times for 17× 17 window 
in a 128× 128 image

Conventional
Integral

Fig. 8. Left: Extraction of histograms is accelerated by using integral
histograms [?]. Each graph corresponds to a different histogram size.
Right: Covariance extraction also improves by using the integral
images. Covariance is computed for 17× 17 image windows.

FPGAs enables large-scale parallel processing and pipelin-
ing of data flow. Latest FPGAs provide significant on-chip
RAM and support high clock speeds. However, current on-
chip RAMs are not sufficient to support a useful level of
internal RAM frame buffering in object detection and tracking.
Therefore, additional external memory banks are required
to provide storage during processing of image data. The
high I/O capability of FPGAs supports access to multiple
RAM banks simultaneously, enabling effective and efficient
pipelining. By using multiple memory banks, background
subtraction for a 512×512 frame takes only 1.96msec on a
cheaper 100Mhz FPGA, whereas the same operation requires
77.4msec for a 30Mhz TMS320C44 and 3.15msec on a
1.1GHz TMS320C64x DSP board [?].

Still, there remains need for algorithmic improvements to
achieve a real-time tracking performance under uncontrolled
conditions:

• Likelihood score computation between the object and
the candidate regions is a bottleneck. Tracking meth-
ods employing histograms become more demanding as
the histogram size increases. Some histogram distance
metrics (Bhattacharya, KL) are inherently expensive. For
covariance tracking, the likelihood computation requires
extraction of eigenvectors, which is slow. Fast likelihood
computation methods can significantly improve the com-
putational speed.

• Complexity is proportional to the number of the candidate
regions (or the search region size). Hierarchical search
methods can be applied to accelerate the tracking process.

• Localized search methods such as mean-shift and ensem-
ble tracking become slower as the object size becomes
larger. Adaptive scaling of the kernels and images without
destroying the salient information can be adapted to
achieve a real-time performance.

• Kernel based tracking methods becomes more demanding
as the number of objects increases. Global search meth-
ods can be applied for applications that require tracking
of a multitude objects.

IV. CONCLUSIONS

As discussed above, object detection and tracking are among
the computationally most demanding image processing tasks.



5

In addition to the mentioned algorithmic developments, special
hardware implementations would significantly improve the
speed of these tasks. Pixel-wise operations in object detection
and search operations in tracking can easily be processed in
parallel. On the other hand, robustness to extreme conditions
requires scene adaptation and ability to select between differ-
ent detectors and trackers. We expect hybrid solutions that can
predict and apply the best combination of the detectors and
trackers to be more popular in the future. Nevertheless, such
solutions would require even more computational power.


